Extracellular interactions and ligand degradation shape the nodal morphogen gradient
نویسندگان
چکیده
The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient.
منابع مشابه
Quantifying the Gurken morphogen gradient in Drosophila oogenesis.
Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR s...
متن کاملDiverse Paths to Morphogen Gradient Robustness
2 Summary The patterning of many developing tissues is orchestrated by gradients of morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. It is widely thought that the purpose of such interactions is to make gradients robust—i.e. resistant to change in the face of genetic or environmental perturbations...
متن کاملInvestigating the principles of morphogen gradient formation: from tissues to cells.
Morphogen gradients regulate the patterning and growth of many tissues, hence a key question is how they are established and maintained during development. Theoretical descriptions have helped to explain how gradient shape is controlled by the rates of morphogen production, spreading and degradation. These effective rates have been measured using fluorescence recovery after photobleaching (FRAP...
متن کاملWingless Repression of Drosophila frizzled 2 Expression Shapes the Wingless Morphogen Gradient in the Wing
In Drosophila wing imaginal discs, the Wingless (Wg) protein acts as a morphogen, emanating from the dorsal/ventral (D/V) boundary of the disc to directly define cell identities along the D/V axis at short and long range. Here, we show that high levels of a Wg receptor, Drosophila frizzled 2 (Dfz2), stabilize Wg, allowing it to reach cells far from its site of synthesis. Wg signaling represses ...
متن کاملCell-Surface Bound Nonreceptors and Signaling Morphogen Gradients.
The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomp...
متن کامل